数据库分析工具(数据库分析工具有哪些)-ITBeer科技资讯

数据库分析工具(数据库分析工具有哪些)

跨境

ITBeer科技资讯 2024-12-03 07:09:18

摘要 数据库,分析,工具,具有,哪些

来源: 风口星

数据库分析工具(数据库分析工具有哪些)

1、数据处理工具:Excel

数据分析师,在有些公司也会有数据产品经理、数据挖掘工程师等等。他们最初级最主要的工具就是Excel。有些公司也会涉及到像Visio,Xmind、PPT等设计图标数据分析方面的高级技巧。数据分析师是一个需要拥有较强综合能力的岗位,因此,在有些互联网公司仍然需要数据透视表演练、Vision跨职能流程图演练、Xmind项目计划导图演练、PPT高级动画技巧等。

2、数据库:MySQL

Excel如果能够玩的很转,能胜任一部分数据量不是很大的公司。但是基于Excel处理数据能力有限,如果想胜任中型的互联网公司中数据分析岗位还是比较困难。因此需要学会数据库技术,一般Mysql。你需要了解MySQL管理工具的使用以及数据库的基本操作;数据表的基本操作、MySQL的数据类型和运算符、MySQL函数、查询语句、存储过程与函数、触发程序以及视图等。比较高阶的需要学习MySQL的备份和恢复;熟悉完整的MySQL数据系统开发流程。

3、数据可视化:Tableau& Echarts

如果说前面2条是数据处理的技术,那么在如今“颜值为王”的现在,如何将数据展现得更好看,让别人更愿意看,这也是一个技术活。好比公司领导让你对某一个项目得研究成果做汇报,那么你不可能给他看单纯的数据一样,你需要让数据更直观,甚至更美观。

Echarts是开源的,代码可以自己改,种类也非常丰富,这里不多做介绍,可以去创建一个工作区了解下。

4、大数据分析:SPSS& Python& HiveSQL等

如果说Excel是“轻数据处理工具”,Mysql是“中型数据处理工具”那么,大数据分析,涉及的面就非常广泛,技术点涉及的也比较多。这也就是为什么目前互联网公司年薪百万重金难求大数据分析师的原因。

1、数据处理工具:Excel

数据分析师,在有些公司也会有数据产品经理、数据挖掘工程师等等。他们最初级最主要的工具就是Excel。有些公司也会涉及到像Visio,Xmind、PPT等设计图标数据分析方面的高级技巧。数据分析师是一个需要拥有较强综合能力的岗位,因此,在有些互联网公司仍然需要数据透视表演练、Vision跨职能流程图演练、Xmind项目计划导图演练、PPT高级动画技巧等。

2、数据库:MySQL

Excel如果能够玩的很转,能胜任一部分数据量不是很大的公司。但是基于Excel处理数据能力有限,如果想胜任中型的互联网公司中数据分析岗位还是比较困难。因此需要学会数据库技术,一般Mysql。你需要了解MySQL管理工具的使用以及数据库的基本操作;数据表的基本操作、MySQL的数据类型和运算符、MySQL函数、查询语句、存储过程与函数、触发程序以及视图等。比较高阶的需要学习MySQL的备份和恢复;熟悉完整的MySQL数据系统开发流程。

3、数据可视化:Tableau& Echarts

如果说前面2条是数据处理的技术,那么在如今“颜值为王”的现在,如何将数据展现得更好看,让别人更愿意看,这也是一个技术活。好比公司领导让你对某一个项目得研究成果做汇报,那么你不可能给他看单纯的数据一样,你需要让数据更直观,甚至更美观。

数据处理软件是指用于收集、整理、分析、可视化和管理数据的一系列工具。它们在现代社会中发挥着至关重要的作用,因为处理和分析大量数据是许多行业(如商业、科研、医疗等)做出决策的关键。

Excel是一款广为人知的数据处理软件,它属于微软Office套件的一部分。Excel提供了丰富的功能,如数据排序、筛选、公式计算、图表制作等,非常适合进行基础的数据处理和分析。由于其易用性和普及性,Excel被广泛应用于各种场景,从个人财务管理到企业数据分析都有它的身影。

Python是一种强大的编程语言,尤其在数据处理领域,其灵活性和强大的库支持使其备受青睐。例如,Pandas库提供了高效的数据处理和分析功能,而Matplotlib和Seaborn等库则用于数据可视化。此外,Python还可以与数据库进行交互,实现数据的导入和导出。因此,Python不仅是数据科学家的首选工具,也是许多其他领域工作者进行数据处理的有力武器。

SQL是一种用于管理关系型数据库的编程语言。通过SQL,用户可以执行各种数据库操作,如查询、插入、更新和删除数据。在商业环境中,SQL是数据分析师和数据库管理员必备的技能。通过使用SQL,可以高效地检索和处理存储在数据库中的大量数据。

R语言是另一种广泛用于数据处理和统计分析的编程语言。R语言拥有大量的统计和机器学习库,如ggplot2用于数据可视化,dplyr用于数据处理等。由于其强大的统计功能,R语言在科研领域有着广泛的应用,特别是在生物信息学、社会科学和预测建模等领域。

除了以上提到的软件外,还有许多其他的数据处理软件,如Tableau、Power BI、SAS等,它们各自具有不同的特点和适用场景。选择哪款软件取决于具体的数据处理需求、用户的技术背景以及预算等因素。

我推荐一些常用的大数据分析工具

1.专业的大数据分析工具

2.各种Python数据可视化第三方库

3.其它语言的数据可视化框架

一、专业的大数据分析工具

1、FineReport

FineReport是一款纯Java编写的、集数据展示(报表)和数据录入(表单)功能于一身的企业级web报表工具,只需要简单的拖拽操作便可以设计复杂的中国式报表,搭建数据决策分析系统。

2、FineBI

FineBI是新一代自助大数据分析的商业智能产品,提供了从数据准备、自助数据处理、数据分析与挖掘、数据可视化于一体的完整解决方案,也是我比较推崇的可视化工具之一。

FineBI的使用感同Tableau类似,都主张可视化的探索性分析,有点像加强版的数据透视表。上手简单,可视化库丰富。可以充当数据报表的门户,也可以充当各业务分析的平台。

二、Python的数据可视化第三方库

Python正慢慢地成为数据分析、数据挖掘领域的主流语言之一。在Python的生态里,很多开发者们提供了非常丰富的、用于各种场景的数据可视化第三方库。这些第三方库可以让我们结合Python语言绘制出漂亮的图表。

1、pyecharts

Echarts(下面会提到)是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。当Python遇上了Echarts,pyecharts便诞生了,它是由chenjiandongx等一群开发者维护的Echarts Python接口,让我们可以通过Python语言绘制出各种Echarts图表。

2、Bokeh

Bokeh是一款基于Python的交互式数据可视化工具,它提供了优雅简洁的方法来绘制各种各样的图形,可以高性能的可视化大型数据集以及流数据,帮助我们制作交互式图表、可视化仪表板等。

三、其他数据可视化工具

1、Echarts

前面说过了,Echarts是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。

大家都知道去年春节以及近期央视大规划报道的百度大数据产品,如百度迁徙、百度司南、百度大数据预测等等,这些产品的数据可视化均是通过ECharts来实现的。

2、D3

D3(Data Driven Documents)是支持SVG渲染的另一种JavaScript库。但是D3能够提供大量线性图和条形图之外的复杂图表样式,例如Voronoi图、树形图、圆形集群和单词云等。

  文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

海报生成中...


最新新闻

热门新闻

要闻阅读

热门标签