数据分析专业工具(大数据分析可视化工具)-ITBeer科技资讯

数据分析专业工具(大数据分析可视化工具)

跨境

ITBeer科技资讯 2024-12-03 06:49:23

摘要 数据分析,工具,专业,可视化

来源: 风口星

数据分析专业工具(大数据分析可视化工具)

数据分析工具包括多种软件,以下是常见的几种:

一、Excel数据分析工具。Excel是一款常用的数据处理软件,它提供了数据透视表、图表分析等功能,可以方便地对数据进行整理、分析和可视化展示。Excel适合处理小规模的数据集,对于大型复杂的数据分析任务也能胜任。

二、Python数据分析工具。Python是一种强大的编程语言,广泛应用于数据分析领域。Python拥有众多的数据处理和分析库,如pandas、numpy、scipy等,可以用于数据处理、统计分析、数据可视化等方面的工作。这些库能够帮助用户轻松地处理大规模数据集并进行复杂的分析。

三、R语言数据分析工具。R是一种专门为统计分析而设计的编程语言,广泛应用于数据分析领域。R语言拥有丰富的统计分析和数据可视化函数库,如ggplot2、dplyr等,可以方便地进行数据挖掘、预测分析和机器学习等工作。同时,R语言的交互性和图形界面也使得它易于使用和理解。

四、SQL数据库查询工具。SQL是用于管理关系数据库的标准语言,也是数据分析中常用的工具之一。通过SQL查询语句,用户可以检索、插入、更新和删除数据库中的数据,进行数据的查询和分析工作。常见的SQL数据库查询工具有MySQL、Oracle SQL Developer等。

五、数据可视化工具。数据可视化是将数据以图形化的方式呈现出来的过程,有助于用户更直观地理解数据和分析结果。常见的数据可视化工具有Tableau、Power BI等,这些工具提供了丰富的图表类型和可视化功能,方便用户快速生成直观的数据报告和图表。

以上所述即为常见的数据分析工具,每种工具都有其特点和优势,根据具体的数据分析需求和场景选择合适的工具进行使用,可以大大提高数据分析的效率和准确性。

1、数据处理工具:Excel

数据分析师,在有些公司也会有数据产品经理、数据挖掘工程师等等。他们最初级最主要的工具就是Excel。有些公司也会涉及到像Visio,Xmind、PPT等设计图标数据分析方面的高级技巧。数据分析师是一个需要拥有较强综合能力的岗位,因此,在有些互联网公司仍然需要数据透视表演练、Vision跨职能流程图演练、Xmind项目计划导图演练、PPT高级动画技巧等。

2、数据库:MySQL

Excel如果能够玩的很转,能胜任一部分数据量不是很大的公司。但是基于Excel处理数据能力有限,如果想胜任中型的互联网公司中数据分析岗位还是比较困难。因此需要学会数据库技术,一般Mysql。你需要了解MySQL管理工具的使用以及数据库的基本操作;数据表的基本操作、MySQL的数据类型和运算符、MySQL函数、查询语句、存储过程与函数、触发程序以及视图等。比较高阶的需要学习MySQL的备份和恢复;熟悉完整的MySQL数据系统开发流程。

3、数据可视化:Tableau& Echarts

如果说前面2条是数据处理的技术,那么在如今“颜值为王”的现在,如何将数据展现得更好看,让别人更愿意看,这也是一个技术活。好比公司领导让你对某一个项目得研究成果做汇报,那么你不可能给他看单纯的数据一样,你需要让数据更直观,甚至更美观。

我推荐一些常用的大数据分析工具

1.专业的大数据分析工具

2.各种Python数据可视化第三方库

3.其它语言的数据可视化框架

一、专业的大数据分析工具

1、FineReport

FineReport是一款纯Java编写的、集数据展示(报表)和数据录入(表单)功能于一身的企业级web报表工具,只需要简单的拖拽操作便可以设计复杂的中国式报表,搭建数据决策分析系统。

2、FineBI

FineBI是新一代自助大数据分析的商业智能产品,提供了从数据准备、自助数据处理、数据分析与挖掘、数据可视化于一体的完整解决方案,也是我比较推崇的可视化工具之一。

FineBI的使用感同Tableau类似,都主张可视化的探索性分析,有点像加强版的数据透视表。上手简单,可视化库丰富。可以充当数据报表的门户,也可以充当各业务分析的平台。

二、Python的数据可视化第三方库

Python正慢慢地成为数据分析、数据挖掘领域的主流语言之一。在Python的生态里,很多开发者们提供了非常丰富的、用于各种场景的数据可视化第三方库。这些第三方库可以让我们结合Python语言绘制出漂亮的图表。

1、pyecharts

Echarts(下面会提到)是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。当Python遇上了Echarts,pyecharts便诞生了,它是由chenjiandongx等一群开发者维护的Echarts Python接口,让我们可以通过Python语言绘制出各种Echarts图表。

2、Bokeh

Bokeh是一款基于Python的交互式数据可视化工具,它提供了优雅简洁的方法来绘制各种各样的图形,可以高性能的可视化大型数据集以及流数据,帮助我们制作交互式图表、可视化仪表板等。

三、其他数据可视化工具

1、Echarts

前面说过了,Echarts是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。

大家都知道去年春节以及近期央视大规划报道的百度大数据产品,如百度迁徙、百度司南、百度大数据预测等等,这些产品的数据可视化均是通过ECharts来实现的。

2、D3

D3(Data Driven Documents)是支持SVG渲染的另一种JavaScript库。但是D3能够提供大量线性图和条形图之外的复杂图表样式,例如Voronoi图、树形图、圆形集群和单词云等。

数据分析工具其实有很多种,对应不同类型的使用者也有各自适合的选择。例如懂数据算法计算机语言的人,可能给他一款,填写算法代码流畅的分析软件就是有效。掌握了数据分析专业技能的人,强大的分析功能能将工作做到事半功倍,不管看着功能多复杂。还有就是我这种非计算机专业出身,非统计学出身,但工作做还需要对大量数据进行分析的人。

如果你跟我一样,那么可以看下我的回答。

我总结了下,我以前找分析工具的时候,自己先想了几个方向点:

1、好上手。一看板面就知道怎么导入数据,怎么做图表,怎么排版的。这样的高效。

2、功能还得强大的.毕竟是非专业人士了,找分析工具就是为了充分发挥工具自身能动性,和强大功能,来给我们创造价值的,特别是涉及到数据大量、复杂,必须有给力的功能支撑才能是良心工具。

3、可视化呈现要好一点,就是图表要高大上的。数据分析报告得拿出手,图表的展现就是第一门面。包装的意识还是要有的。

所以结论就是找一些操作容易、功能强大、图表颜值还得好的工具了。我就是照着这个思路找的,也用过几个,可以给大家说说。像东软做的Dataviz,是用着比较顺手的了。具体介绍我就摘抄下,自己懒得码那么多字

DataViz数据可视化分析工具,不需要编写代码,也不需要任何程序设计基础,用户可以通过简单的拖拽就可以实现数据可视化展示与分析。DataViz使用简单,但是实现的功能却不简单,上百种丰富的炫酷图表,可以实现数据的多维度多层次分析。

各种数据分析好后,可以做成组合图册:

重点就是操作起来简单,拖拖拽拽的,看起来特别复杂的图表,其实拼贴一下就能搞定了。操作面板基本本国人都可以分分钟用起来。

如果是专业人士或者计算机大拿的,估计可以寻找更复杂的工具进行尝试了。但不适合我,所以我这里就不进行推荐了。

  文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

海报生成中...


最新新闻

热门新闻

要闻阅读

热门标签