数据分析工具推荐(数据分析网站)-ITBeer科技资讯

数据分析工具推荐(数据分析网站)

跨境

ITBeer科技资讯 2024-12-03 05:46:16

摘要 数据分析,工具,推荐,网站

来源: 风口星

数据分析工具推荐(数据分析网站)

1、数据处理工具:Excel

数据分析师,在有些公司也会有数据产品经理、数据挖掘工程师等等。他们最初级最主要的工具就是Excel。有些公司也会涉及到像Visio,Xmind、PPT等设计图标数据分析方面的高级技巧。数据分析师是一个需要拥有较强综合能力的岗位,因此,在有些互联网公司仍然需要数据透视表演练、Vision跨职能流程图演练、Xmind项目计划导图演练、PPT高级动画技巧等。

2、数据库:MySQL

Excel如果能够玩的很转,能胜任一部分数据量不是很大的公司。但是基于Excel处理数据能力有限,如果想胜任中型的互联网公司中数据分析岗位还是比较困难。因此需要学会数据库技术,一般Mysql。你需要了解MySQL管理工具的使用以及数据库的基本操作;数据表的基本操作、MySQL的数据类型和运算符、MySQL函数、查询语句、存储过程与函数、触发程序以及视图等。比较高阶的需要学习MySQL的备份和恢复;熟悉完整的MySQL数据系统开发流程。

3、数据可视化:Tableau& Echarts

如果说前面2条是数据处理的技术,那么在如今“颜值为王”的现在,如何将数据展现得更好看,让别人更愿意看,这也是一个技术活。好比公司领导让你对某一个项目得研究成果做汇报,那么你不可能给他看单纯的数据一样,你需要让数据更直观,甚至更美观。

数据分析工具主要分为四种:描述性分析工具、诊断性分析工具、预测性分析工具以及指导性(或规范性)分析工具。

1.描述性分析工具:这类工具主要用于理解和描述数据的基本特征。它们可以提供数据的中心趋势、离散程度和分布形态等统计量,如均值、中位数、标准差、箱线图等。Excel、Tableau和Power BI等软件都提供了强大的描述性分析功能。

2.诊断性分析工具:诊断性工具深入探索数据,以找出可能的原因和影响因子。例如,当销售额下降时,诊断性分析可以帮助识别是哪些因素(如产品价格、市场需求、竞争对手活动等)导致了这种下降。SPSS和SAS等统计软件在这方面非常有用。

3.预测性分析工具:预测性工具利用历史数据来预测未来趋势和结果。这通常涉及到复杂的统计模型,如回归分析、时间序列分析和机器学习模型。R、Python和SQL是构建和实现这些预测模型的常用编程语言。

4.指导性(或规范性)分析工具:这是最先进的数据分析工具,它们不仅可以预测未来,还可以推荐行动方案。指导性分析工具结合了机器学习、优化算法和业务规则,以提供关于应该采取什么行动的建议。例如,在供应链管理中,规范性分析可以优化库存水平以减少成本。

每种类型的数据分析工具都有其特定的应用场景和优势,选择哪种工具取决于分析目标、数据类型和分析师的技能水平。在现代数据分析实践中,往往需要结合使用多种工具以获得更全面和深入的洞见。

EXCEL MATLAB Origin等等

当前流行的图形可视化和数据分析软件有Matlab,Mathmatica和Maple等。这些软件功能强大,可满足科技工作中的许多需要,但使用这些软件需要一定的计算机编程知识和矩阵知识,并熟悉其中大量的函数和命令。而使用Origin就像使用Excel和Word那样简单,只需点击鼠标,选择菜单命令就可以完成大部分工作,获得满意的结果。但它又比excel要强大些。一般日常的话可以用Excel,然后加载宏,里面有一些分析工具,不过有时需要数据库软件支持

我推荐一些常用的大数据分析工具

1.专业的大数据分析工具

2.各种Python数据可视化第三方库

3.其它语言的数据可视化框架

一、专业的大数据分析工具

1、FineReport

FineReport是一款纯Java编写的、集数据展示(报表)和数据录入(表单)功能于一身的企业级web报表工具,只需要简单的拖拽操作便可以设计复杂的中国式报表,搭建数据决策分析系统。

2、FineBI

FineBI是新一代自助大数据分析的商业智能产品,提供了从数据准备、自助数据处理、数据分析与挖掘、数据可视化于一体的完整解决方案,也是我比较推崇的可视化工具之一。

FineBI的使用感同Tableau类似,都主张可视化的探索性分析,有点像加强版的数据透视表。上手简单,可视化库丰富。可以充当数据报表的门户,也可以充当各业务分析的平台。

二、Python的数据可视化第三方库

Python正慢慢地成为数据分析、数据挖掘领域的主流语言之一。在Python的生态里,很多开发者们提供了非常丰富的、用于各种场景的数据可视化第三方库。这些第三方库可以让我们结合Python语言绘制出漂亮的图表。

1、pyecharts

Echarts(下面会提到)是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。当Python遇上了Echarts,pyecharts便诞生了,它是由chenjiandongx等一群开发者维护的Echarts Python接口,让我们可以通过Python语言绘制出各种Echarts图表。

2、Bokeh

Bokeh是一款基于Python的交互式数据可视化工具,它提供了优雅简洁的方法来绘制各种各样的图形,可以高性能的可视化大型数据集以及流数据,帮助我们制作交互式图表、可视化仪表板等。

三、其他数据可视化工具

1、Echarts

前面说过了,Echarts是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。

大家都知道去年春节以及近期央视大规划报道的百度大数据产品,如百度迁徙、百度司南、百度大数据预测等等,这些产品的数据可视化均是通过ECharts来实现的。

2、D3

D3(Data Driven Documents)是支持SVG渲染的另一种JavaScript库。但是D3能够提供大量线性图和条形图之外的复杂图表样式,例如Voronoi图、树形图、圆形集群和单词云等。

  文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

海报生成中...


最新新闻

热门新闻

要闻阅读

热门标签