数据分析工具排行(数据分析四个步骤是什么)-ITBeer科技资讯

数据分析工具排行(数据分析四个步骤是什么)

跨境

ITBeer科技资讯 2024-12-03 05:36:08

摘要 数据分析,工具,排行,四个,步骤,是什么

来源: 风口星

数据分析工具排行(数据分析四个步骤是什么)

分析软件有Excel、SPSS、MATLAB、 SAS、Finereport等其中Excel我就不多说了相信大家都懂。 SPSS是世界上最早采用图形菜单驱动界面的统计软件它将几乎所有的功能都以统一、规范的界面展现出来。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。其统计过程包括了常用的、较为成熟的统计过程,完全可以满足大部分的工作需要。 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境使用的。其优点如下:

一、高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;

二、具有完备的图形处理功能,实现计算结果和编程的可视化;

三、友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;

四、功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等),为用户提供了大量方便实用的处理工具。但是这款软件的使用难度较大,非专业人士不推荐使用。

SAS是把数据存取,管理,分析和展现有机地融为一体。其功能非常强大统计方法齐,全,新。它由数十个专用模块构成,功能包括数据访问、数据储存及管理、应用开发、图形处理、数据分析、报告编制、运筹学方法、计量经济学与预测等。SAS系统基本上可以分为四大部分:SAS数据库部分;SAS分析核心;SAS开发呈现工具;SAS对分布处理模式的支持及其数据仓库设计。不过这款软件的使用需要一定的专业知识,非专业人士不推荐使用。 Finereport类EXCEL设计模式,EXCEL+绑定数据列”形式持多SHEET和跨SHEET计算,完美兼容EXCEL公式,用户可以所见即所得的设计出任意复杂的表样,轻松实现中国式复杂报表。它的功能也是非常的丰富,比如说数据支持与整合、聚合报表、数据地图、Flash打印、交互分析等

1.QUEST

QUEST是IBM公司Almaden研究中心开发的一个多任务数据挖掘系统,目的是为新一代决策支持系统的应用开发提供高效的数据开采基本构件。系统具有如下特点:

提供了专门在大型数据库上进行各种开采的功能:关联规则发现、序列模式发现、时间序列聚类、决策树分类、递增式主动开采等。

各种开采算法具有近似线性(O(n))计算复杂度,可适用于任意大小的数据库。

算法具有找全性,即能将所有满足指定类型的模式全部寻找出来。

为各种发现功能设计了相应的并行算法。

2.MineSet

MineSet是由SGI公司和美国Standford大学联合开发的多任务数据挖掘系统。MineSet集成多种数据挖掘算法和可视化工具,帮助用户直观地、实时地发掘、理解大量数据背后的知识。MineSet有如下特点:

MineSet以先进的可视化显示方法闻名于世。

提供多种萃诰蚰J健0ǚ掷嗥鳌⒒毓槟J健⒐亓嬖颉⒕劾喙椤⑴卸狭兄匾取?br>

支持多种关系数据库。可以直接从Oracle、Informix、Sybase的表读取数据,也可以通过SQL命令执行查询。

多种数据转换功能。在进行挖掘前,MineSet可以去除不必要的数据项,统计、集合、分组数据,转换数据类型,构造表达式由已有数据项生成新的数据项,对数据采样等。

操作简单、支持国际字符、可以直接发布到Web。

3.DBMiner

DBMiner是加拿大SimonFraser大学开发的一个多任务数据挖掘系统,它的前身是DBLearn。该系统设计的目的是把关系数据库和数据开采集成在一起,以面向属性的多级概念为基础发现各种知识。DBMiner系统具有如下特色:

能完成多种知识的发现:泛化规则、特性规则、关联规则、分类规则、演化知识、偏离知识等。

综合了多种数据开采技术:面向属性的归纳、统计分析、逐级深化发现多级规则、元规则引导发现等方法。

提出了一种交互式的类SQL语言——数据开采查询语言DMQL。

能与关系数据库平滑集成。

实现了基于客户/服务器体系结构的Unix和PC(Windows/NT)版本的系统。

1、新榜:互联网渠道的价值标准:以日、周、月、年为周期,按24大分类权威发布以微信为代表的中国各自媒体平台最真实、最具价值的运营榜单,方便用户了解新媒体整体发展情况,为用户提供有效的参考导向…

2、Hadoop:能够对大量数据进行分布式处理的软件框架。

3、清博大数据中国新媒体大数据权威平台:清博大数据拥有清博指数、清博舆情、营广工品等多个核心产品。提供微信、微博、头条号等新媒体排行榜,广告交易、舆情报告、数据咨询...

4、神策数据:多维度数据实时分析,事件分析,漏斗分析,留存分析,分布分析等8大分析模型,轻松搞定数据分析需求。

5、GrowingIO:实时采集用户行为数据,可视化实时出图。

1、数据处理工具:Excel

数据分析师,在有些公司也会有数据产品经理、数据挖掘工程师等等。他们最初级最主要的工具就是Excel。有些公司也会涉及到像Visio,Xmind、PPT等设计图标数据分析方面的高级技巧。数据分析师是一个需要拥有较强综合能力的岗位,因此,在有些互联网公司仍然需要数据透视表演练、Vision跨职能流程图演练、Xmind项目计划导图演练、PPT高级动画技巧等。

2、数据库:MySQL

Excel如果能够玩的很转,能胜任一部分数据量不是很大的公司。但是基于Excel处理数据能力有限,如果想胜任中型的互联网公司中数据分析岗位还是比较困难。因此需要学会数据库技术,一般Mysql。你需要了解MySQL管理工具的使用以及数据库的基本操作;数据表的基本操作、MySQL的数据类型和运算符、MySQL函数、查询语句、存储过程与函数、触发程序以及视图等。比较高阶的需要学习MySQL的备份和恢复;熟悉完整的MySQL数据系统开发流程。

3、数据可视化:Tableau& Echarts

如果说前面2条是数据处理的技术,那么在如今“颜值为王”的现在,如何将数据展现得更好看,让别人更愿意看,这也是一个技术活。好比公司领导让你对某一个项目得研究成果做汇报,那么你不可能给他看单纯的数据一样,你需要让数据更直观,甚至更美观。

  文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

海报生成中...


最新新闻

热门新闻

要闻阅读

热门标签