大数据工具有哪些(大数据工具应用)
跨境
摘要 数据,具有,哪些,工具,应用

1.开源大数据生态圈
Hadoop HDFS、Hadoop MapReduce, HBase、Hive渐次诞生,早期Hadoop生态圈逐步形成。
开源生态圈活跃,并免费,但Hadoop对技术要求高,实时性稍差。
2.商用大数据分析工具
一体机数据库/数据仓库(费用很高)
IBM PureData(Netezza), Oracle Exadata, SAP Hana等等。
数据仓库(费用较高)
Teradata AsterData, EMC GreenPlum, HP Vertica等等。
数据集市(费用一般)
QlikView、 Tableau、国内永洪科技Yonghong Data Mart等等。
前端展现
用于展现分析的前端开源工具有JasperSoft,Pentaho, Spagobi, Openi, Birt等等。
用于展现分析商用分析工具有Cognos,BO, Microsoft, Oracle,Microstrategy,QlikView、 Tableau、国内永洪科技Yonghong Z-Suite等等。
第一类,数据存储和管理类的大数据工具。
此类较为主流的使用工具本文为大家列出三种:
1.Cloudera
实际上,Cloudera只是增加了一些其它服务的Hadoop,因为大数据并不是容易搞,需要我们构建大数据集群,而Cloudera的团队就可以为我们提供这些服务,还能帮培训员工。
2.MongoDB
这是一个数据库,并且非常的受大家欢迎,大数据常常采用的是非结构化数据,而MongoDB最适用于管理此类数据。
3.Talend
Talend是数据集成和解决方案领域的领袖级企业,他们为公共云和私有云提供了一体化的数据平台。
我们都知道,大数据归根结底还是数据,其根源还是始于数据的存储,而大数据之所以称之为“大”,就是因为它的数据量非常大,因此,存储就变得至关重要。除此之外,将数据按照某种格式化的治理结构,也尤为重要,因为这样,我们可以获得洞察力。而以上三种工具,就是这方面常用的三种使用工具。
第二类,数据清理类工具。
1.OpenRefine
这是一款开源的,易于使用的,可以通过删除重复项、空白字段及其他错误来清理排列杂乱无章的数据的工具,在业内广受好评。
2.Excel
这个不用多说,不仅在大数据,基本上所有的公司办公软件都会安装Excel,在Excel中有许多的公式和函数,方便我们进行一系列的操作,当然其缺点也比较明显,那就是不适用于庞大的数据集。
3.DataCleaner
就像它的名字一样,DataCleaner是一款能对数据质量进行分析、比较和监督的软件,也可以将半结构化的数据集转化成干净的可读的数据集。
大数据分析工具有:
1、R-编程
R编程是对所有人免费的最好的大数据分析工具之一。它是一种领先的统计编程语言,可用于统计分析、科学计算、数据可视化等。R编程语言还可以扩展自身以执行各种大数据分析操作。
在这个强大的帮助下;语言,数据科学家可以轻松创建统计引擎,根据相关和准确的数据收集提供更好、更精确的数据洞察力。它具有类数据处理和存储。我们还可以在 R编程中集成其他数据分析工具。
除此之外,您还可以与任何编程语言(例如 Java、C、Python)集成,以提供更快的数据传输和准确的分析。R提供了大量可用于任何数据集的绘图和图形。
2、Apache Hadoop
Apache Hadoop是领先的大数据分析工具开源。它是一个软件框架,用于在商品硬件的集群上存储数据和运行应用程序。它是由软件生态系统组成的领先框架。
Hadoop使用其 Hadoop分布式文件系统或 HDFS和 MapReduce。它被认为是大数据分析的顶级数据仓库。它具有在数百台廉价服务器上存储和分发大数据集的惊人能力。
这意味着您无需任何额外费用即可执行大数据分析。您还可以根据您的要求向其添加新节点,它永远不会让您失望。
3、MongoDB
MongoDB是世界领先的数据库软件。它基于 NoSQL数据库,可用于存储比基于 RDBMS的数据库软件更多的数据量。MongoDB功能强大,是最好的大数据分析工具之一。
它使用集合和文档,而不是使用行和列。文档由键值对组成,即MongoDB中的一个基本数据单元。文档可以包含各种单元。但是大小、内容和字段数量因 MongoDB中的文档而异。
MongoDB最好的部分是它允许开发人员更改文档结构。文档结构可以基于程序员在各自的编程语言中定义的类和对象。
MongoDB有一个内置的数据模型,使程序员能够理想地表示层次关系来存储数组和其他元素。
4、RapidMiner
RapidMiner是分析师集成数据准备、机器学习、预测模型部署等的领先平台之一。它是最好的免费大数据分析工具,可用于数据分析和文本挖掘。
它是最强大的工具,具有用于分析过程设计的一流图形用户界面。它独立于平台,适用于 Windows、Linux、Unix和 macOS。它提供各种功能,例如安全控制,在可视化工作流设计器工具的帮助下减少编写冗长代码的需要。
它使用户能够采用大型数据集在 Hadoop中进行训练。除此之外,它还允许团队协作、集中工作流管理、Hadoop模拟等。
它还组装请求并重用 Spark容器以对流程进行智能优化。RapidMiner有五种数据分析产品,即RapidMiner Studio Auto Model、Auto Model、RapidMiner Turbo Prep、RapidMiner Server和RapidMiner Radoop。
5、Apache Spark
Apache Spark是最好、最强大的开源大数据分析工具之一。借助其数据处理框架,它可以处理大量数据集。通过结合或其他分布式计算工具,在多台计算机上分发数据处理任务非常容易。
它具有用于流式 SQL、机器学习和图形处理支持的内置功能。它还使该站点成为大数据转换的最快速和通用的生成器。我们可以在内存中以快 100倍的速度处理数据,而在磁盘中则快 10倍。
除此之外,它还拥有 80个高级算子,可以更快地构建并行应用程序。它还提供 Java中的高级 API。该平台还提供了极大的灵活性和多功能性,因为它适用于不同的数据存储,如 HDFS、Openstack和 Apache Cassandra。
6、Microsoft Azure
Microsoft Azure是领先的大数据分析工具之一。Microsoft Azure也称为 Windows Azure。它是 Microsoft处理的公共云计算平台,是提供包括计算、分析、存储和网络在内的广泛服务的领先平台。
Windows Azure提供两类标准和高级的大数据云产品。它可以无缝处理大量数据工作负载。
除此之外,Microsoft Azure还拥有一流的分析能力和行业领先的 SLA以及企业级安全和监控。它也是开发人员和数据科学家的最佳和高效平台。它提供了在最先进的应用程序中很容易制作的实时数据。
无需 IT基础架构或虚拟服务器进行处理。它可以轻松嵌入其他编程语言,如 JavaScript和 C#。
7、Zoho Analytics
Zoho Analytics是最可靠的大数据分析工具之一。它是一种 BI工具,可以无缝地用于数据分析,并帮助我们直观地分析数据以更好地理解原始数据。
同样,任何其他分析工具都允许我们集成多个数据源,例如业务应用程序、数据库软件、云存储、CRM等等。我们还可以在方便时自定义报告,因为它允许我们生成动态且高度自定义的可操作报告。
在 Zoho分析中上传数据也非常灵活和容易。我们还可以在其中创建自定义仪表板,因为它易于部署和实施。世界各地的用户广泛使用该平台。此外,它还使我们能够在应用程序中生成评论威胁,以促进员工和团队之间的协作。
它是最好的大数据分析工具,与上述任何其他工具相比,它需要的知识和培训更少。因此,它是初创企业和入门级企业的最佳选择。
以上内容参考百度百科——大数据分析
文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。
海报生成中...