的数据分析工具(数据分析方法五种)-ITBeer科技资讯

的数据分析工具(数据分析方法五种)

跨境

ITBeer科技资讯 2024-12-03 12:23:15

摘要 数据分析,工具,方法,五种

来源: 风口星

的数据分析工具(数据分析方法五种)

在数据的世界里,统计分析如同迷宫中的指路明灯,但对于众多学者和专业人士来说,寻找合适的工具始终是一大挑战。这里,我们将为你揭示几款备受推崇的统计分析软件,它们在易用性、功能性和专业性之间找到了微妙的平衡。

1.九数云在线数据统计分析工具-实用与智能并存

九数云,由业界知名帆软软件打造,是一款专为大数据分析而设计的神器。其低门槛的特点使得统计新手也能轻松上手,无需编写复杂函数。它的强大性能使得大规模数据的处理变得轻而易举,无需编程即可完成。操作界面简洁,只需简单拖拽,即可生成35+种专业图表,且提供丰富的主题供你选择。此外,九数云还记录分析过程,方便问题追踪和模板生成,让你的分析工作既高效又有序。

2. SAS-专业级统计分析之王

SAS,全球统计分析领域的领头羊,由两位研究生初创,如今已发展为全球员工过万的大型企业。作为统计分析的国际标准,SAS拥有30多个功能模块,涵盖了数据访问、管理、分析和展现的全面能力。然而,它的强大功能往往伴随着一定的学习曲线,需要编写汇编语言程序,更适合专业统计人员使用。

3. SPSS-社会科学研究的得力助手

SPSS,由斯坦福研究生开发,以其直观易用而知名。相较于SAS,SPSS操作更为简便,统计方法全面,图表绘制方便,尤其适合社会学研究的数据分析。SPSS13.0版提供了数据整理、统计分析、图表分析等多元功能,涵盖了描述性统计、回归分析、生存分析等多元统计分析领域。

4. Stata-精确而高效的命令式工具

Stata虽小,五脏俱全,1985年便已面世。它以命令操作为特点,分析方法全面,输出结果清晰,图表设计精良。然而,其数据兼容性和内存管理是需要改进的地方。

5. Statistica-全功能统计分析平台

Statistica由StatSoft公司开发,集成了全面的统计分析、图表制作和资料管理功能,尤其以其强大的制图功能受到赞誉,可在图表视窗中展示丰富的统计分析技术。

无论你是初入统计殿堂的新手,还是经验丰富的研究者,这些工具都能帮助你高效、准确地进行数据探索和分析,让复杂的统计分析过程变得触手可及。选择最适合你的那款,让数据说话,让智慧闪光吧!

1、数据处理工具:Excel

数据分析师,在有些公司也会有数据产品经理、数据挖掘工程师等等。他们最初级最主要的工具就是Excel。有些公司也会涉及到像Visio,Xmind、PPT等设计图标数据分析方面的高级技巧。数据分析师是一个需要拥有较强综合能力的岗位,因此,在有些互联网公司仍然需要数据透视表演练、Vision跨职能流程图演练、Xmind项目计划导图演练、PPT高级动画技巧等。

2、数据库:MySQL

Excel如果能够玩的很转,能胜任一部分数据量不是很大的公司。但是基于Excel处理数据能力有限,如果想胜任中型的互联网公司中数据分析岗位还是比较困难。因此需要学会数据库技术,一般Mysql。你需要了解MySQL管理工具的使用以及数据库的基本操作;数据表的基本操作、MySQL的数据类型和运算符、MySQL函数、查询语句、存储过程与函数、触发程序以及视图等。比较高阶的需要学习MySQL的备份和恢复;熟悉完整的MySQL数据系统开发流程。

3、数据可视化:Tableau& Echarts

如果说前面2条是数据处理的技术,那么在如今“颜值为王”的现在,如何将数据展现得更好看,让别人更愿意看,这也是一个技术活。好比公司领导让你对某一个项目得研究成果做汇报,那么你不可能给他看单纯的数据一样,你需要让数据更直观,甚至更美观。

操作步骤如下:

1、打开excel点击菜单栏中文件,选择并进入选项界面。

2、进入选项卡,点击“加载项”

3、点击“分析工具库”

4、点击底部的转到,进入加载宏界面。

5、在分析工具库前打钩,确认即可,此时excel表格右上角菜单栏中就会出现“数据分析”命令选项。

扩展资料

数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。

数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。

Excel作为常用的分析工具,可以实现基本的分析工作,在商业智能领域Cognos、Style Intelligence、Microstrategy、Brio、BO和Oracle以及国内产品如Yonghong Z-Suite BI套件等。

1.QUEST

QUEST是IBM公司Almaden研究中心开发的一个多任务数据挖掘系统,目的是为新一代决策支持系统的应用开发提供高效的数据开采基本构件。系统具有如下特点:

提供了专门在大型数据库上进行各种开采的功能:关联规则发现、序列模式发现、时间序列聚类、决策树分类、递增式主动开采等。

各种开采算法具有近似线性(O(n))计算复杂度,可适用于任意大小的数据库。

算法具有找全性,即能将所有满足指定类型的模式全部寻找出来。

为各种发现功能设计了相应的并行算法。

2.MineSet

MineSet是由SGI公司和美国Standford大学联合开发的多任务数据挖掘系统。MineSet集成多种数据挖掘算法和可视化工具,帮助用户直观地、实时地发掘、理解大量数据背后的知识。MineSet有如下特点:

MineSet以先进的可视化显示方法闻名于世。

提供多种萃诰蚰J健0ǚ掷嗥鳌⒒毓槟J健⒐亓嬖颉⒕劾喙椤⑴卸狭兄匾取?br>

支持多种关系数据库。可以直接从Oracle、Informix、Sybase的表读取数据,也可以通过SQL命令执行查询。

多种数据转换功能。在进行挖掘前,MineSet可以去除不必要的数据项,统计、集合、分组数据,转换数据类型,构造表达式由已有数据项生成新的数据项,对数据采样等。

操作简单、支持国际字符、可以直接发布到Web。

3.DBMiner

DBMiner是加拿大SimonFraser大学开发的一个多任务数据挖掘系统,它的前身是DBLearn。该系统设计的目的是把关系数据库和数据开采集成在一起,以面向属性的多级概念为基础发现各种知识。DBMiner系统具有如下特色:

能完成多种知识的发现:泛化规则、特性规则、关联规则、分类规则、演化知识、偏离知识等。

综合了多种数据开采技术:面向属性的归纳、统计分析、逐级深化发现多级规则、元规则引导发现等方法。

提出了一种交互式的类SQL语言——数据开采查询语言DMQL。

能与关系数据库平滑集成。

实现了基于客户/服务器体系结构的Unix和PC(Windows/NT)版本的系统。

  文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

海报生成中...


最新新闻

热门新闻

要闻阅读

热门标签