多维度数据分析工具(多维度数据分析工具是什么)-ITBeer科技资讯

多维度数据分析工具(多维度数据分析工具是什么)

跨境

ITBeer科技资讯 2024-12-03 12:38:30

摘要 多维度,数据分析,工具,是什么

来源: 风口星

多维度数据分析工具(多维度数据分析工具是什么)

数据分析工具其实有很多种,对应不同类型的使用者也有各自适合的选择。例如懂数据算法计算机语言的人,可能给他一款,填写算法代码流畅的分析软件就是有效。掌握了数据分析专业技能的人,强大的分析功能能将工作做到事半功倍,不管看着功能多复杂。还有就是我这种非计算机专业出身,非统计学出身,但工作做还需要对大量数据进行分析的人。

如果你跟我一样,那么可以看下我的回答。

我总结了下,我以前找分析工具的时候,自己先想了几个方向点:

1、好上手。一看板面就知道怎么导入数据,怎么做图表,怎么排版的。这样的高效。

2、功能还得强大的.毕竟是非专业人士了,找分析工具就是为了充分发挥工具自身能动性,和强大功能,来给我们创造价值的,特别是涉及到数据大量、复杂,必须有给力的功能支撑才能是良心工具。

3、可视化呈现要好一点,就是图表要高大上的。数据分析报告得拿出手,图表的展现就是第一门面。包装的意识还是要有的。

所以结论就是找一些操作容易、功能强大、图表颜值还得好的工具了。我就是照着这个思路找的,也用过几个,可以给大家说说。像东软做的Dataviz,是用着比较顺手的了。具体介绍我就摘抄下,自己懒得码那么多字

DataViz数据可视化分析工具,不需要编写代码,也不需要任何程序设计基础,用户可以通过简单的拖拽就可以实现数据可视化展示与分析。DataViz使用简单,但是实现的功能却不简单,上百种丰富的炫酷图表,可以实现数据的多维度多层次分析。

各种数据分析好后,可以做成组合图册:

重点就是操作起来简单,拖拖拽拽的,看起来特别复杂的图表,其实拼贴一下就能搞定了。操作面板基本本国人都可以分分钟用起来。

如果是专业人士或者计算机大拿的,估计可以寻找更复杂的工具进行尝试了。但不适合我,所以我这里就不进行推荐了。

六个用于大数据分析的最好工具

一、Hadoop

Hadoop是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop还是可伸缩的,能够处理 PB级数据。此外,Hadoop依赖于社区服务器,因此它的成本比较低,任何人都可以使用。

二、HPCC

HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。

三、Storm

Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、Admaster等等。

Storm有许多应用领域:实时分析、在线机器学习、不停顿的计算、分布式RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务)、 ETL(Extraction-Transformation-Loading的缩写,即数据抽取、转换和加载)等等。Storm的处理速度惊人:经测试,每个节点每秒钟可以处理100万个数据元组。Storm是可扩展、容错,很容易设置和操作。

四、Apache Drill

为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。Apache Drill实现了 Google’s Dremel.

据Hadoop厂商MapR Technologies公司产品经理Tomer Shiran介绍,“Drill”已经作为Apache孵化器项目来运作,将面向全球软件工程师持续推广。

五、RapidMiner

RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。

六、Pentaho BI

Pentaho BI平台不同于传统的BI产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。

1.QUEST

QUEST是IBM公司Almaden研究中心开发的一个多任务数据挖掘系统,目的是为新一代决策支持系统的应用开发提供高效的数据开采基本构件。系统具有如下特点:

提供了专门在大型数据库上进行各种开采的功能:关联规则发现、序列模式发现、时间序列聚类、决策树分类、递增式主动开采等。

各种开采算法具有近似线性(O(n))计算复杂度,可适用于任意大小的数据库。

算法具有找全性,即能将所有满足指定类型的模式全部寻找出来。

为各种发现功能设计了相应的并行算法。

2.MineSet

MineSet是由SGI公司和美国Standford大学联合开发的多任务数据挖掘系统。MineSet集成多种数据挖掘算法和可视化工具,帮助用户直观地、实时地发掘、理解大量数据背后的知识。MineSet有如下特点:

MineSet以先进的可视化显示方法闻名于世。

提供多种萃诰蚰J健0ǚ掷嗥鳌⒒毓槟J健⒐亓嬖颉⒕劾喙椤⑴卸狭兄匾取?br>

支持多种关系数据库。可以直接从Oracle、Informix、Sybase的表读取数据,也可以通过SQL命令执行查询。

多种数据转换功能。在进行挖掘前,MineSet可以去除不必要的数据项,统计、集合、分组数据,转换数据类型,构造表达式由已有数据项生成新的数据项,对数据采样等。

操作简单、支持国际字符、可以直接发布到Web。

3.DBMiner

DBMiner是加拿大SimonFraser大学开发的一个多任务数据挖掘系统,它的前身是DBLearn。该系统设计的目的是把关系数据库和数据开采集成在一起,以面向属性的多级概念为基础发现各种知识。DBMiner系统具有如下特色:

能完成多种知识的发现:泛化规则、特性规则、关联规则、分类规则、演化知识、偏离知识等。

综合了多种数据开采技术:面向属性的归纳、统计分析、逐级深化发现多级规则、元规则引导发现等方法。

提出了一种交互式的类SQL语言——数据开采查询语言DMQL。

能与关系数据库平滑集成。

实现了基于客户/服务器体系结构的Unix和PC(Windows/NT)版本的系统。

1、新榜:互联网渠道的价值标准:以日、周、月、年为周期,按24大分类权威发布以微信为代表的中国各自媒体平台最真实、最具价值的运营榜单,方便用户了解新媒体整体发展情况,为用户提供有效的参考导向…

2、Hadoop:能够对大量数据进行分布式处理的软件框架。

3、清博大数据中国新媒体大数据权威平台:清博大数据拥有清博指数、清博舆情、营广工品等多个核心产品。提供微信、微博、头条号等新媒体排行榜,广告交易、舆情报告、数据咨询...

4、神策数据:多维度数据实时分析,事件分析,漏斗分析,留存分析,分布分析等8大分析模型,轻松搞定数据分析需求。

5、GrowingIO:实时采集用户行为数据,可视化实时出图。

  文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。

海报生成中...


最新新闻

热门新闻

要闻阅读

热门标签