多维度数据分析工具(多维度图表)
跨境
摘要 多维度,数据分析,工具,图表

1、新榜:互联网渠道的价值标准:以日、周、月、年为周期,按24大分类权威发布以微信为代表的中国各自媒体平台最真实、最具价值的运营榜单,方便用户了解新媒体整体发展情况,为用户提供有效的参考导向…
2、Hadoop:能够对大量数据进行分布式处理的软件框架。
3、清博大数据中国新媒体大数据权威平台:清博大数据拥有清博指数、清博舆情、营广工品等多个核心产品。提供微信、微博、头条号等新媒体排行榜,广告交易、舆情报告、数据咨询...
4、神策数据:多维度数据实时分析,事件分析,漏斗分析,留存分析,分布分析等8大分析模型,轻松搞定数据分析需求。
5、GrowingIO:实时采集用户行为数据,可视化实时出图。
数据分析工具其实有很多种,对应不同类型的使用者也有各自适合的选择。例如懂数据算法计算机语言的人,可能给他一款,填写算法代码流畅的分析软件就是有效。掌握了数据分析专业技能的人,强大的分析功能能将工作做到事半功倍,不管看着功能多复杂。还有就是我这种非计算机专业出身,非统计学出身,但工作做还需要对大量数据进行分析的人。
如果你跟我一样,那么可以看下我的回答。
我总结了下,我以前找分析工具的时候,自己先想了几个方向点:
1、好上手。一看板面就知道怎么导入数据,怎么做图表,怎么排版的。这样的高效。
2、功能还得强大的.毕竟是非专业人士了,找分析工具就是为了充分发挥工具自身能动性,和强大功能,来给我们创造价值的,特别是涉及到数据大量、复杂,必须有给力的功能支撑才能是良心工具。
3、可视化呈现要好一点,就是图表要高大上的。数据分析报告得拿出手,图表的展现就是第一门面。包装的意识还是要有的。
所以结论就是找一些操作容易、功能强大、图表颜值还得好的工具了。我就是照着这个思路找的,也用过几个,可以给大家说说。像东软做的Dataviz,是用着比较顺手的了。具体介绍我就摘抄下,自己懒得码那么多字
DataViz数据可视化分析工具,不需要编写代码,也不需要任何程序设计基础,用户可以通过简单的拖拽就可以实现数据可视化展示与分析。DataViz使用简单,但是实现的功能却不简单,上百种丰富的炫酷图表,可以实现数据的多维度多层次分析。
各种数据分析好后,可以做成组合图册:
重点就是操作起来简单,拖拖拽拽的,看起来特别复杂的图表,其实拼贴一下就能搞定了。操作面板基本本国人都可以分分钟用起来。
如果是专业人士或者计算机大拿的,估计可以寻找更复杂的工具进行尝试了。但不适合我,所以我这里就不进行推荐了。
今天想好好跟大家分享一个好用的数据功能,先卖个关子,分享之前先来看几个实际的工作场景~
月底了,需要展示各省份本月的订单量分布,总不能用30多条折线显示吧,一堆密密麻麻的线没人想看吧!
想对比分析团队里10个销售经理业绩完成的情况,要出10张图表一一对比,这也太麻烦了吧?
店铺有成百上千个SKU,老板要对比查看每个SKU的销售数据,难道要我做N个图表吗?
负责的网站有几十个推广渠道,想一一对比每个渠道的转化效果,一张图表展示不了效果肿么办?
类似的“痛苦”很多人都遇到过,当涉及到数据多维度对比分析时,比如上面的例子:不同日期维度不同地域维度的数值对比,往往一张数据图表并不能直观地展示效果,又不想直接用表格呈现一“坨”数据,这时”对比拆分”功能就显得尤为重要!
介绍“对比拆分”之前,先普及一下维度、对比、数值(数据小白一定要看,大神可以忽视)是什么:
维度:是事物或现象的某种特征,可以简单理解是X轴,如性别、地区、时间等都是维度。其中时间是一种常用的维度,时间前后的对比称为纵比,如用户数环比上月增长10%;同级单位之间的比较,简称横比,如不同省份人口数的比较、不同公司收入的比较;
对比:当横比、纵比都要涉及的时候(如不同日期不同地域),就需要对比啦!
数值:即指标/度量,用于衡量事物发展程度的单位,可以简单理解是Y轴;
鉴于对比拆分的定义比较抽象,这里先不做解释,主要结合文章开头的2个实际场景来展示其使用价值,希望能真正帮到需要的yin!
工作场景1:O2O/电商网站想要了解近期各省市的订单金额分布情况,需要的维度:日期、地区,需要的数值:订单金额,先看“美颜”前后对比图吧~
(“美颜”前)
(“美颜”后)
“美颜”前各省的数据堆在一起,N条折线就像一团杂乱的毛线,数据给人的感觉也是一团乱,根本不想看,也无从下手,更别说用数据驱动运营了。
再看看“美颜”后的图表,很清晰地展示各个省份的数据量和变化趋势,图表瞬间转成小清新,感觉美美哒!
赶紧来看看“美颜”过程:
第1步:打开BDP个人版,上传需要分析的工作表,在编辑图表页面将日期(付款日期)拉到维度栏、地区(收货省份)拉到对比栏,订单金额拉到数值栏,记得顺手调个稀饭的颜色;
第2步:在右下方勾选“按对比拆分”,瞬间就出现多个动图啦!不喜欢默认的显示,还可以寄已调整单屏显示的行列数量哦~
酷炫的亮点来了:当你把鼠标hover到数据上,同时按下alt键,就能看某一天各省市的数据啦!左右滑动鼠标还有惊喜哦!
工作场景2:半个月过去了,销售总监想要了解截止目前为止各个销售经理的业绩完成情况;需要的维度:时间、人员名称,需要的数值:合同金额(计量图可以设置目标值)
柱状图只能简单展示每个人本月的订单金额,并不能看出目标完成的进度如何,更别说能直观对比每个人完成的情况了。计量图的确能展示目标完成的进度,但是只能通过筛选一一查看每个人的进度,并不能一下子展示所有人的。
好了,“对比拆分”又上场啦,噔噔噔~~~(具体操作见上一个例子)
哇塞,每个人的业绩完成情况太直观了。半个月过去了,完成50%及以上的只有3个,总监应该好好鼓励他们,争取更好的业绩,还有7人连50%都没有达到,那就要一一找了解下情况,找到原因及时改进,尤其是低于是30%的销售:
是不是在跟进大客户,项目是否靠谱,是不是属于后半个月发力,大项目能否填补之前的落后?不能的话要怎么做才能达标?
是不是本月跟的客户太少?那应该积极主动去寻找销售线索。
还是跟了很多项目,但成交率很低,那成交率很低的原因又是什么:地域问题、客户性质 or其他原因呢?根据不同原因有针对性地进行调整。
......
原因有很多,总监可以根据这张图表一一找人了解情况,及时寻找原因并做出调整,争取让本月业绩更上一层楼,这不就是数据和图表呈现的意义嘛!
上述场景都很常见,也只是参考。最后,总结下对比拆分的适用场景:涉及多维度对比分析、同时需要分类呈现数据结果。目前,BDP个人版支持对指标卡、计量图、折线图、柱柱图和条形图按照对比拆分为多个图形。要好好学习对比拆分功能,学好能助你调整、优化运营策略,也许会有意想不到的效果哦!
1.QUEST
QUEST是IBM公司Almaden研究中心开发的一个多任务数据挖掘系统,目的是为新一代决策支持系统的应用开发提供高效的数据开采基本构件。系统具有如下特点:
提供了专门在大型数据库上进行各种开采的功能:关联规则发现、序列模式发现、时间序列聚类、决策树分类、递增式主动开采等。
各种开采算法具有近似线性(O(n))计算复杂度,可适用于任意大小的数据库。
算法具有找全性,即能将所有满足指定类型的模式全部寻找出来。
为各种发现功能设计了相应的并行算法。
2.MineSet
MineSet是由SGI公司和美国Standford大学联合开发的多任务数据挖掘系统。MineSet集成多种数据挖掘算法和可视化工具,帮助用户直观地、实时地发掘、理解大量数据背后的知识。MineSet有如下特点:
MineSet以先进的可视化显示方法闻名于世。
提供多种萃诰蚰J健0ǚ掷嗥鳌⒒毓槟J健⒐亓嬖颉⒕劾喙椤⑴卸狭兄匾取?br>
支持多种关系数据库。可以直接从Oracle、Informix、Sybase的表读取数据,也可以通过SQL命令执行查询。
多种数据转换功能。在进行挖掘前,MineSet可以去除不必要的数据项,统计、集合、分组数据,转换数据类型,构造表达式由已有数据项生成新的数据项,对数据采样等。
操作简单、支持国际字符、可以直接发布到Web。
3.DBMiner
DBMiner是加拿大SimonFraser大学开发的一个多任务数据挖掘系统,它的前身是DBLearn。该系统设计的目的是把关系数据库和数据开采集成在一起,以面向属性的多级概念为基础发现各种知识。DBMiner系统具有如下特色:
能完成多种知识的发现:泛化规则、特性规则、关联规则、分类规则、演化知识、偏离知识等。
综合了多种数据开采技术:面向属性的归纳、统计分析、逐级深化发现多级规则、元规则引导发现等方法。
提出了一种交互式的类SQL语言——数据开采查询语言DMQL。
能与关系数据库平滑集成。
实现了基于客户/服务器体系结构的Unix和PC(Windows/NT)版本的系统。
文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。
海报生成中...